Question			Answer	Marks	Guidance
1	a		p.d./voltage (across component) divided by current (in it)	B1	accept V / I with V and I defined; per (unit) current, etc
	b	i	$\begin{aligned} & \mathrm{R}=\mathrm{\rho} / / \mathrm{A} \\ & =1.7 \times 10^{-8} \times 20 \times \mathrm{d} / 4 \mathrm{~d}^{2}=1.7 \times 10^{-8} \times 5 / 3.8 \times 10^{-10} \\ & =220(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { allow } A=4 \pi r^{2}=4.5 \times 10^{-19} \text { giving } 285 \Omega \\ & \text { accept } 220 \text { to } 230 \Omega \end{aligned}$
		ii	$\mathrm{n}=1 / \mathrm{d}^{3}=\left(1.8 \times 10^{28}\right)$	A1	accept alternatives, e.g. 80/volume
		iii	$\begin{aligned} & \text { I }=\text { nAev } \\ & =1.8 \times 10^{28} \times 4 \times\left(3.8 \times 10^{-10}\right)^{2} \times 1.6 \times 10^{-19} \times 1.9 \times 10^{-5} \\ & =3.2 \times 10^{-14}(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	1 mark for substitution into formula, ecf n, A values accept 3.16 and 3.5 (using $n=2 \times 10^{28}$) accept 2.48 and 2.76 (for 285Ω)
		iv	$\begin{aligned} \mathrm{P} & =\mathrm{I}^{2} \mathrm{R} \\ & =\left(3.2 \times 10^{-14}\right)^{2} \times 200 \times 10^{9} \\ & =2.0 \times 10^{-16}(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(i) \& (iii) accept 1 SF as estimate; can obtain 1.2 to 2.8 using all values possible in (iii)
	c		electron moves at drift velocity signal travels at/close to the speed of light	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept answers explaining idea of drift velocity
			Total	12	

Question			Answer	Marks	Guidance
2	(a)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow chemical
		(ii)	(some) energy is transferred into thermal energy /lost as heat in (driving charge through) the battery. It behaves as if it has an (internal) resistance/AW or there is a voltage drop across/decrease in voltage from the battery when a current is drawn from it/AW	B1	allow any description which uses E = V + Ir with symbols defined but not just the formula alone or e.g. statement about 'lost volts'/current
	(b)	(correct substitution into resistors in parallel formula $\mathrm{R}=90 \Omega$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$1 / \mathrm{R}=1 / 90 \text { or } 0.011$ correct answer
		(ii)	using $\mathrm{V}_{\text {out }}=R_{2} /\left(R_{1}+R_{2}\right) \mathrm{V}_{\text {in }}:$ alt: $16=I \times 120$ $\mathrm{~V}_{\text {out }}=90 /(30+90) 16$ so $I=0.133 \mathrm{~A}$ $\mathrm{~V}_{\text {out }}=12 \mathrm{~V}$ $\mathrm{~V}_{\text {out }}=0.13 \times 90=12 \mathrm{~V}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf (b)(i) accept $\mathrm{V}_{\text {out }}=(90 / 120) \times 16=12 \mathrm{~V}$ for full marks N.B. beware of false ratios, e.g. $360 /(120+360)$ giving correct answer; give first marking point only
$\begin{array}{\|l\|} \hline \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \end{array}$		(iii)	resistance (of thermistor) decreases (with temperature increase) current in circuit increases or as total resistance is less so current in thermistor increases voltage ratio between 30Ω and combination changes so voltage across thermistor falls	$\begin{aligned} & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	max 4 marks QWC mark is either of the M marks
	(c)	($\begin{aligned} & \mathrm{Q}=\mathrm{It}=1.2 \times 8 \times 60 \times 60 \\ & \mathrm{Q}=34560(\mathrm{C}) \end{aligned}$ correct unit,	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept 3.5 or 3.46×10^{4} allow 1 mark for answer of 9.6 or 576 allow C, kC, A s; N.B. 9.6 A h or 576 A min score 3/3
		(ii)	$\begin{aligned} & \text { energy }=34560 \times 16=552960 \mathrm{~J} \text { or } \mathrm{I}=1.4 / 16=00875 \mathrm{~A} \\ & \text { time }=552960 / 1.4=394970 \mathrm{~s} \quad \text { then } \mathrm{t}=34560 / \mathrm{l} \\ & \text { time }=394970 / 3600=(109.7 \mathrm{~h})=110 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf (c)(i) allow full marks for $1.2 \times 8 \times 16 / 1.4=110 \mathrm{~h}$ allow 111 h when using $3.5 \times 10^{4} \mathrm{C}$
			Total	18	

Question			Expected Answers	Marks	Additional Guidance
3					
	a	i	$\begin{aligned} & \mathrm{E}=(\mathrm{Pt}=) 36 \times 3600 \\ & =1.3 \times 10^{5}(\mathrm{~J}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { C1 } \\ \text { A1 } \\ \hline \end{array}$	allow $\mathrm{I}=3 \mathrm{~A}$ and $\mathrm{E}=\mathrm{VIt}$, etc. accept 129600 (J)
		ii	$\begin{aligned} & \mathrm{Q}=\mathrm{E} / \mathrm{V}=1.3 \times 10^{5} / 12 \text { or } \mathrm{Q}=\mathrm{It}=3 \times 3600 \\ & =1.1 \times 10^{4} \\ & \text { unit: } \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	ecf (a)(i) accept 1.08×10^{4} allow A s not JV^{-1}
		iii	$\begin{aligned} & \mathrm{Q} / \mathrm{e}=1.1 \times 10^{4} / 1.6 \times 10^{-19} \\ & =6.9 \times 10^{22} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{C} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	```ecf (a)(ii) accept 6.75 or 6.8 < 10 22 using 10800```
	b	i	the average displacement/distance travelled of the electrons along the wire per second; (over time/on average) they move slowly in one direction through the metal/ Cu lattice (when there is a p.d. across the wire); (because) they collide constantly/in a short distance with the lattice/AW	B1 B1 B1	no mark for quoting formula allow in one second max 2 marks from 3 marking points
		ii	$\begin{array}{\|l\|} \hline \text { select I I nAev }(=3.0 \mathrm{~A}) \\ \mathrm{v}=3.0 / 8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19} \\ =2.1 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	1 mark for correct formula 1 mark for correct substitutions into formula 1 mark for correct answer to 2 or more SF
			Total question 1	12	

