Question		on	Answer	Marks	Guidance	
1	а		p.d./voltage (across component) divided by current (in it)	B1	accept V/I with V and I defined; per (unit) current, etc	
	b	i	$R = \rho I/A$ = 1.7 x 10 ⁻⁸ x 20 x d/4d ² = 1.7 x 10 ⁻⁸ x 5/3.8 x 10 ⁻¹⁰ =220 (Ω)	C1 C1 A1	allow A = $4\pi r^2$ = 4.5 x 10 ⁻¹⁹ giving 285 Ω accept 220 to 230 Ω	
		ii	$n = 1/d^3 = (1.8 \times 10^{28})$	A1	accept alternatives, e.g. 80/volume	
		iii	I = nAev = 1.8 x 10 ²⁸ x 4 x (3.8 x 10 ⁻¹⁰) ² x 1.6 x 10 ⁻¹⁹ x 1.9 x 10 ⁻⁵ = 3.2 x 10 ⁻¹⁴ (A)	C1 A1	1 mark for substitution into formula, ecf n, A values accept 3.16 and 3.5 (using n = 2 x 10 ²⁸) accept 2.48 and 2.76 (for 285 Ω)	
		iv	$P = I^{2}R$ = (3.2 x 10 ⁻¹⁴) ² x 200 x 10 ⁹ = 2.0 x 10 ⁻¹⁶ (W)	C1 C1 A1	ecf b(i) & (iii) accept 1 SF as estimate; can obtain 1.2 to 2.8 using all values possible in (iii)	
	С		electron moves at drift velocity signal travels at/close to the speed of light	B1 B1	accept answers explaining idea of drift velocity	
			Total	12		

Question		on	Answer	Marks	Guidance	
2	(a)	(i)	energy transferred from source/changed from some form to electrical energy; per unit charge (to drive charge round a complete circuit)	M1 A1	allow chemical	
		(ii)	(some) energy is transferred into thermal energy /lost as heat in (driving charge through) the battery. It behaves as if it has an (internal) resistance/AW or there is a voltage drop across/decrease in voltage from the battery when a current is drawn from it/AW	B1	allow any description which uses E = V + Ir with symbols defined but not just the formula alone or e.g. statement about 'lost volts'/current	
	(b)	(correct substitution into resistors in parallel formula R = 90 Ω	C1 A1	1/R = 1/90 or 0.011 correct answer	
		(ii)	using $V_{out} = R_2/(R_1 + R_2)$ V_{in} : alt: 16 = I x 120 $V_{out} = 90/(30 + 90)$ 16so I = 0.133 A $V_{out} = 12$ V $V_{out} = 0.13 \times 90 = 12$ V	C1 C1 A1	ecf (b)(i) accept $V_{out} = (90/120) \times 16 = 12 \text{ V}$ for full marks N.B. beware of false ratios, e.g. $360/(120 + 360)$ giving correct answer; give first marking point only	
A A A		(iii)	resistance (of thermistor) decreases (with temperature increase) current <u>in circuit</u> increases or as <u>total</u> resistance is less so current in thermistor increases voltage ratio between 30 Ω and combination changes so voltage across thermistor falls	B1 M1 A1 M1 A1	max 4 marks QWC mark is either of the M marks	
	(c)	(Q = It = 1.2 x 8 x 60 x 60 Q = 34560 (C) correct unit,	C1 A1 B1	accept 3.5 or 3.46 x 10 ⁴ allow 1 mark for answer of 9.6 or 576 allow C, kC, A s; N.B. 9.6 A h or 576 A min score 3/3	
		(ii)	energy = 34560 x 16 = 552960 J or I = 1.4/16 = 00875 A time = 552960/1.4 = 394970 s then t = 34560/I time = 394970/3600 = (109.7 h) = 110 h	C1 C1 A1	ecf (c)(i) allow full marks for $1.2 \times 8 \times 16/1.4 = 110 \text{ h}$ allow 111 h when using $3.5 \times 10^4 \text{ C}$	
	Total 18					

Question		on	Expected Answers	Marks	Additional Guidance
3					
	а	i	E = (Pt =) 36 x 3600	C1	allow I = 3 A and E = VIt, etc.
			$= 1.3 \times 10^5 (J)$	A1	accept 129600 (J)
		ii	$Q = E/V = 1.3 \times 10^{5}/12$ or $Q = It = 3 \times 3600$	C1	ecf (a)(i)
			$= 1.1 \times 10^4$	A1	accept 1.08 x 10 ⁴
			unit: C	B1	allow A s not J V ⁻¹
		iii	$Q/e = 1.1 \times 10^4/1.6 \times 10^{-19}$	C1	ecf (a)(ii)
			$= 6.9 \times 10^{22}$	A1	accept 6.75 or 6.8 x 10 ²² using 10800
	b	i	the average displacement/distance travelled of the electrons along the		no mark for quoting formula
			wire per second;	B1	allow in one second
			(over time/on average) they move slowly in one direction through the		
			metal/Cu lattice (when there is a p.d. across the wire);	B1	
			(because) they collide constantly/in a short distance with the lattice/AW	B1	max 2 marks from 3 marking points
		ii	select I = $nAev (= 3.0 A)$	C1	1 mark for correct formula
			$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$	C1	1 mark for correct substitutions into formula
			$= 2.1 \times 10^{-3} \text{ (m s}^{-1}\text{)}$	A1	1 mark for correct answer to 2 or more SF
			Total question 1	12	